Healthcare Industry Case Study

Annually, approximately 3 million patients are readmitted to hospitals in the USA within 30 days. The overall direct cost of readmissions to hospitals/ Insurance companies ranges from US\$20 billion to \$40 billion. Hospitals, Insurance companies, doctors and patients are vexed with the unsolved problem of predicting the rate of hospital readmission for patients. The vision is to reduce 30hospital unplanned readmissions leading to lower healthcare costs and improved patient care.

The mission is to leverage Auto-ML & SXI based algorithms/data models to analyze real time and historical data from multiple sources to create a patient's risk/vulnerability profile, to certain conditions that could result in readmissions and offer personalized treatment recommendations to reduce the probability of the same.

Class Distribution

Status	No. of Patients
Not Readmitted (Good)	54864
Readmitted (Bad)	46902
Not Readmission Rate	53.9%

Features Responsible – Auto ML/SXI

miglitol_No: whether the patient is prescribed this medication or not

acarbose_No: whether the patient is prescribed this medication or not

Auto-ML Methodology Results

Algorithms	Test Accuracy (25 percentile)	Test Accuracy (50 percentile)	Test Accuracy (75 percentile)	Test Accuracy (90 percentile)
Random Forest	88.1	89.0	88.5	88.61
XGBoost	88.4	88.4	88.6	88.58
MLP	88.5	88.5	88.5	89.0
RNN	88.5	88.5	88.56	88.56
No. of Features	45	87	130	156
Avg. Accuracy	88.37	88.60	88.54	88.68

- Based on our observation , MLP was the best performing algorithm with 89% accuracy • in 90th percentile.
- 90th percentile is the best percentile with an average accuracy of 88.68%.

Auto-ML Methodology Conclusion

- In conclusion, predicting whether a patient will be readmitted or not is a crucial task for the healthcare • industry. Auto-ML algorithms can be used to analyze large volumes of patient data and identify patterns that may be indicative of readmission risk. The dataset contains 101,766 records with 33 Categorical and 14 Numerical Features.
- The Auto-ML algorithms were able to predict whether the patient was readmitted or not have based on their • features with an average accuracy between 85% – 90% and helped to identify features that determine the readmission rate and predict whether the patient is in high risk or not to be readmitted.
- The major factors which determines the patient's risk of being readmitted are prescribed medication such as \bullet glyburide-metformin, chlorpropamide, miglitol and acarbose.
- Overall, the application of Auto-ML in predicting patient being readmitted or not can help in saving the patients life by prescribing medicine quickly and more efficiently.

Sensitivity Analysis

Actual Data Values

NUM_PROCEDURES	CHANGE	INSULIN_NO	GLIPIZIDE_NO	PIOGLITAZONE_NO	STATUS		
0 50 %	0 100 %	0 100 %	1 -100 %	1 -100 %	0		
Adjusted Data Values							
NUM_PROCEDURES	CHANGE	INSULIN_NO	GLIPIZIDE_NO	PIOGLITAZONE_NO	STATUS		
1.5 (1.5)	1.0 (1.0)	1.0 (1.0)	0.0 🔶 (-1.0)	0.0 🔸 (-1.0)	1		

- The top 5 features : ۲
 - > NUM_PROCEDURES = No:of lab procedures performed during the encounter
 - > CHANGE = Indicates if there was a change in diabetic medications (either dosage or generic name).
 - INSULIN_NO = whether the patient is prescribed insulin medication or not.
 - GLIPZIDE_NO = whether the patient is prescribed GLIPZIDE medication or not.
 - \blacktriangleright PIOGLITAZONE_NO = whether the patient is prescribed for PIOGLITAZONE medication or not.

For this patient we can see:

- num procedures with 51% increase
- CHANGE with 100% increase (medication has changed (1))
- INSULIN_NO with 100% increase(insulin not prescribed)
- GLIPZIDE_NO with -100% decrease (medication prescribed)
- PIOGLITAZONE_NO with -100 decrease (medication prescribed)

Which will lead the patient to be not readmitted.

Status -0 : readmitted

Status -1 : not readmitted

- ٠
- - be readmitted.

	1.2
	1.83
SXI	0.68
ients not readmitted above SXI	23112
ients readmitted above SXI	19539
ients not readmitted below SXI	31752
ients readmitted below SXI	27363
Accuracy	98.8

Not Readmitted below SXI

Users who have below SXI values and who are not readmitted are more prone to be readmitted.

In order to decrease the readmission rate, these patients are one to focus on, because in future they have more chance to

The average SXI on "not readmitted below SXI" is 1.02. Here we further categorize, so patient's SXI below 1.02 are to be mostly taken care in future.

SXI Method Accuracy is 98.8%

- •
- ۲
- ۲ (FN): 20
- 18

Train Count	Test Count	Actual Train count for not readmitted	Actual train count for readmitte d again	Actual test count for not readmitte d again	Actual test count for readmitted again	Predicted test count not readmitted again	Predicted test count readmitted again	Precision rate	Recall rate	Model Accuracy
40380	10095	18486	21894	4626	5469	4615	5480	0.988	0.985	<mark>0.988</mark>

- **Precision rate**: Precision is defined as the ratio of actual not readmitted patients(True Positive) to a total number of predicted not readmitted patients. **TP / (TP + FP)**
- **Recall rate**: The recall is calculated as the ratio between the Actual numbers of not readmitted patients to the total number of wrongly predicted not readmitted patients as readmitted patients plus actual number of not readmitted patients. TP / (TP + FN)
- Model Accuracy: It is the fraction of predictions where the model got right. (TP + TN) / (TP + FP + TN + FN)

Actual and Predicted was Not Readmitted Patients (TP) : 5843 Actual and Predicted was Readmitted Patients (TN): 4942 Actual Not Readmitted Patients and Predicted Readmitted Patients

Actual Readmitted Patients Predicted Not Readmitted Patients (FP) :

SXI Method - Conclusion

SXI	1.2
Target SXI	<mark>1.61</mark>
Not Readmission rate	53.91%
Target Not Readmission rate	<mark>73.91%</mark>

The correlation between SXI and Not Readmission rate is 0.99

Tree - Interpretation

Total Time in Hospital < 1.5 days

Number of Diagnoses < = 5

Insulin High dosage <= 50% probability

Leads to the patients not being readmitted